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Abstract 
In this paper, we introduce the new concept of block coloring for graphs. Different kinds of 
coloring such as coloring of vertices[1], coloring of edges [2] and coloring of faces[3] have 
already been defined for various types of graphs. As the block graphs find enumerable 
applicationsin network theory,we introduce the theory of coloring of blocks in graphs, named 
as block coloring and study on blocking coloring of specific graphs.The main objective of 
this paper is to introduce coloring of blocks and explicitly define block coloring for path, 
cycle, complete graph,𝑘 −barbell graph, windmill graph, friendship graph, cactus graph, 
bipartite graph and their extensions, with suitable examples. 
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1. INTRODUCTION 

 
In 1852 Graph coloring was used by Francis Guthrie to color the map of countries of 

England and found only four colors were required. Thus initiated the theory of graph 
coloring[3]. Vertex coloring was introduced by Brooks, R. in 1941 [1]. Edge coloring of the 
graph was introduced by Andersen, Lars Døvling in 1977 [2]. There are several coloring of 
graphs studied across the globe namely domianator coloring [4], Total dominator coloing [5], 
power dominator coloring [[6] – [9]], Rainbow dominator coloring [10] etc. 

. 
In this paper, we define the block coloringfind AUM block chromatic number for 

path, cycle, complete graph windmill graph, friendship graph, cactus graph, bipartite graph. 
Suitable examples are given for each labeling on the specified graphs. Throughout this paper, 
let consider thegraph G, which is simple, finite, connected, 𝐺 = (𝑉 (𝐺), 𝐸(𝐺), 𝐵(𝐺)), 

|𝑉 (𝐺)| = 𝑘, |𝐸(𝐺)| = 𝑚, |𝐵(𝐺)| = 𝑙. 
 

2. PRELIMINARIES 

 
Definition 1[11]:In a graph, coloring is an assignment of colors to the vertices or edges or 
both subject to certain condition(s). 

 
Definition 2[11]:A graph is a block graph if every block (maximal 2-connected component) 

is a clique.If G is any undirected graph, the block graph of G, denoted by B(G) is a non 
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separable maximal subgraph of the graph. It is clear that any two blocks of a graph have at 
most one vertex in common. 

 
 

3. BLOCK CLORING 
 

Let G be a graph  with 𝑘 vertices, 𝑚 edges  and 𝑙 blocks,  𝑝, 𝑞, 𝑙 ≥ 1. Let 𝑉(𝐺) = {𝑣1, 𝑣2, 

. . . , 𝑣𝑛}, 𝐸(𝐺) = {e1, e2, . . . , e𝑚}, 𝐵(𝐺) = {𝐵1, 𝐵2, . . . , 𝐵𝑙} denote the vertex set, edge set and 
the block set of G respectively. 

 
Definition 5: AUM Block Coloring 
AUM block coloring of a graph G is assignment of colors to the blocks of G. 

 
Definition 6: Proper AUM Block Coloring 
AUM block coloring of G is proper if different colors are assigned to the blocks that have a 
common vertex. 

 
The minimum number of colors required for proper AUM block coloring of the graph G, is 
called AUM block chromatic number. It is denoted as 3𝐵𝑙 

 
3.1 BLOCK COLORING OF STANDARD GRAPHS WITH SINGLE BLOCK 

First, we consider the standard graphs with single block. 

 
Proposition 1:  For  𝑘 ≥ 3,  the  AUM  block  chromatic  number  of  cycle,  𝐶𝑛  is  1. 
Proof: We consider cycle 𝑐𝑛with 𝑘 ≥ 3 nodes. We prove by induction that the cycle with 𝑘 

nodes will have only one block. Therefore the AUM block chromatic number is one. 
Case (i) Let 𝑘 = 3 

Let 𝐶3 be the cycle with 3 nodes. The vertices be 𝑣1, 𝑣2, 𝑣3, edges be e1 = {𝑣1𝑣2}, e2 = 

{𝑣2𝑣3}, e3 = {𝑣3𝑣1}. Since the cycle is a closed walk, it has only one block 𝐵1. This block is 
colored with color 𝑐1. The AUM block chromatic number of cycle 𝑐3 is 1. 
Case (ii) Let 𝑘 = 4 

Let 𝐶4 be the cycle with 4 nodes. The vertices be 𝑣1, 𝑣2, 𝑣3, 𝑣4 edges be e1 = {𝑣1𝑣2}, e2 = 
{𝑣2𝑣3}, e3 = {𝑣3𝑣4}, e4 = {𝑣4𝑣1}. Since the cycle is a closed walk, it has only one block 𝐵1. 
This block is colored with color 𝑐1. The AUM block chromatic number of the cycle 𝑐4 is1. 

𝑣2 

 
 
 

𝑣3 

 

 
Case (iii) Let 𝑘 = 𝑘 − 1 

Fig 1, the cycle 

Let 𝐶k−1 be the cycle with 𝑘 − 1 nodes. The vertices be 𝑣1, 𝑣2, 𝑣3, 𝑣4, … , 𝑣k−1  edges be 
e1 = {𝑣1𝑣2}, e2 = {𝑣2𝑣3}, e3 = {𝑣3𝑣4}, e4 = {𝑣4𝑣5}, … , ek−1 = {𝑣k−1𝑣1}.   Since   the   cycle 

𝑣1 

𝐵1 = 𝑐1 

𝑣4 
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𝑐k−1is a closed walk, it has only one block 𝐵1. This AUM block is colored with color 𝑐1. The 
block chromatic number of the cycle 𝑐k−1 is 1. 

 
Case (iv) Let 𝑘 = 𝑘 

Let 𝐶k−1 be the cycle with 𝑘 nodes. The vertices be 𝑣1, 𝑣2, 𝑣3, 𝑣4, … , 𝑣k  edges be e1 = 

{𝑣1𝑣2}, e2 = {𝑣2𝑣3}, e3 = {𝑣3𝑣4}, e4 = {𝑣4𝑣5}, … , ek = {𝑣k𝑣1}. Since the cycle 𝑐k is a closed 
walk, it has only one block 𝐵1. This block is colored with color 𝑐1. The AUM block 
chromatic number of the cycle 𝑐k is 1. 

 
Proposition 2: For 𝑘 ≥ 2, the AUM block chromatic number of complete graph 𝐾𝑛 is 1. 
Let the complete graph be 𝐾𝑛 with 𝑘 vertices and 𝑚 edges. Let 𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛 be the 𝑘 

vertices. Since complete graph is the maximal connected graph, then complete graph has 
single block for all 𝑘 ≥ 3. Then the AUM block chromatic number of complete graph is 1. 

 
Proposition 3: For 𝑘 ≥ 3, the AUM block chromatic number of wheel graph, 𝐾𝑛 is 1. 
The proof follows from proposition 2 and proposition 1. 

 
Proposition 4: For 𝑘 ≥ 3, the AUM block chromatic number of grid graph 𝑃𝑛x𝑃𝑚is 1. 
The proof follows from proposition 2 and proposition 1. 

 
Proposition 5: For 𝑘 ≥ 3, the AUM block chromatic number of gear graph 𝐺𝑟is 1. 
The proof follows from proposition 2 and proposition 1. 

 
Proposition  6:  For  𝑘 ≥ 3,  the AUM block chromatic number of  complete bipartite 

graph𝐾𝑛,𝑛is 1. 

The proof follows from proposition 2 and proposition 1. 

 
Proposition 7: For 𝑘 ≥ 3, the AUM block chromatic number of fan graph 𝐹𝑛is 1. 
The proof follows from proposition 2 and proposition 1. 
Remark 6: For any graph that has only one block, AUM block coloring is 1. 

 
3.2 BLOCK COLORING OF STANDARD GRAPHS 

We find block chromatic number of some standard graphs with 𝑙 ≥ 2 blocks 

 
Theorem 7: Every path 𝑃𝑛, 𝑘 ≥ 3the AUM block chromatic number is 2. 
Proof:Let       𝑃𝑛, 𝑘 ≥ 3       be       the       path       graph.       Let       𝑉(𝐺) = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, 
𝐸(𝐺) = {e1, e2, . . . , e𝑛−1}, 𝐵(𝐺) = {𝐵1, 𝐵2, . . . , 𝐵𝑛−1} denote the vertex set, edge set and the 
block set of 𝑃𝑛.|𝑉(𝐺)| = 𝑘 ,   |𝐸(𝐺)| = n − 1, |𝐵(𝐺)| = 𝑘 − 1. Based on the vertices on the 
path 𝑃𝑛 we have following cases. 

 
Case(i): Let 𝑘 ≥ 3&𝑘 is odd, 
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Let  𝑃𝑛, 𝑘 ≥ 3  be  the  path  graph.  Let  𝑉(𝐺) = {𝑣1, 𝑣2,  . . . , 𝑣𝑛},  𝐸(𝐺) = {e1, e2, . . . , e𝑛−1}, 
𝐵(𝐺) = {𝐵1, 𝐵2, . . . , 𝐵𝑛−1} denote the vertex set, edge set and the block set of 𝑃𝑛.|𝑉(𝐺)| = 

𝑘 , |𝐸(𝐺)| = n − 1, |𝐵(𝐺)| = 𝑘 − 1. 

 
Assign the color 𝑐1 to odd indexed blocks the path 𝑃𝑛{𝐵1, 𝐵3, 𝐵5. . , 𝐵𝑛}. Color 𝑐2 is assigned 
to the even indexed blocks of the path 𝑃𝑛{𝐵2, 𝐵4, … , 𝐵𝑛−1}. This block coloring is proper. The 
AUM block chromatic number for the path𝑃𝑛, 𝑘 ≥ 3 is 2. i.e., 3𝐵𝑙(𝑃𝑛) = 2. 

 
Case(ii): Let 𝑘 ≥ 4&𝑘 is even, 
Let  𝑃𝑛, 𝑘 ≥ 4  be  the  path  graph.  Let  𝑉(𝐺) = {𝑣1, 𝑣2,  . . . , 𝑣𝑛},  𝐸(𝐺) = {e1, e2, . . . , e𝑛−1}, 

𝐵(𝐺) = {𝐵1, 𝐵2, . . . , 𝐵𝑛−1} denote the vertex set, edge set and the block set of 𝑃𝑛.|𝑉(𝐺)| = 

𝑘 , |𝐸(𝐺)| = n − 1, |𝐵(𝐺)| = 𝑘 − 1. 

 
Assign the color 𝑐1 to odd indexed blocks the path 𝑃𝑛{𝐵1, 𝐵3, 𝐵5. . , 𝐵𝑛−1}. Color 𝑐2 is 
assigned to the even indexed blocks of the path 𝑃𝑛{𝐵2, 𝐵4, … , 𝐵𝑛}. This block coloring is 

proper. The AUM block chromatic number for the path 𝑃𝑛, 𝑘 ≥ 3 is 2. i.e., 3𝐵𝑙(𝑃𝑛) = 2. 

 
Example 8:In the fig. 2the AUM block coloring of path 𝑃5 

 

 

𝑣1 
 

𝐵1 = 𝑐1 

𝑣2  

𝐵2 = 𝑐2 

𝑣3 
 

𝐵3 = 𝑐1 
𝑣4 

𝐵  = 𝑐 
𝑣5 

 

Fig. 2 path 𝑃5 

 
Theorem 2:The 𝑘 −barbell graph 𝐵(𝐾𝑛, 𝐾𝑛), 𝑘 ≥ 2 the AUM block chromatic number is 2. 
Proof:Let 𝐵(𝐾𝑛, 𝐾𝑛), 𝑘 ≥ 2be the 𝑘 −barbell graph. Let 𝑉(𝐺) = {𝑢1, 𝑢2, … , 𝑢𝑛} 𝖴 {𝑣1, 𝑣2, 

. . . , 𝑣𝑛}, 𝐸(𝐺) = {e1, e2, . . . , e𝑛(𝑛−1)+1}, 𝐵(𝐺) = {𝐵1, 𝐵2, B3} denote the vertex set, edge set 

and the block set of B(Kn, 𝐾𝑛). |𝑉(𝐺)| = 𝑘 , |𝐸(𝐺)| = 𝑘(𝑘 − 1) + 1 , |𝐵(𝐺)| = 3. 

 
Assign the color 𝑐1to the blocks 𝐵1and 𝐵3.The color𝑐2be assigned to the block 𝐵2.This block 
coloring is proper. The AUM block chromatic number for the 𝑘 −barbell graph 𝐵(𝐾𝑛, 𝐾𝑛), is 

2. i.e., 3𝐵𝑙(𝐵(𝐾𝑛, 𝐾𝑛)) = 2. 

 
In the fig. 3the block coloring of 3 −barbell graph 𝐵(𝐾3, 𝐾3) 

 
 
 
 
 
 

𝑣2 

 
 

Fig. 3 3 −barbell graph 𝐵(𝐾3 , 𝐾3) 

𝑣1 

𝐵  = 𝑐 2 2 
𝑣3 

𝑢 1 

𝐵1 = 𝑐1 𝐵3 = 𝑐1 𝑢3 
𝑢3 

𝑣3 
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𝐵1 = 𝑐1 

𝑣0 

3 

3

k

Theorem 3: The windmill graph W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2 the AUM block chromatic number 

is 𝑘 

Proof: Let W𝑑(𝑘, 𝑘), 𝑘 ≥ 2, 𝑘 ≥ 2be the windmill graph. Let 
𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1, 𝑣1 … , 𝑣1 } 𝖴 {𝑣2, 𝑣2, 𝑣2 … , 𝑣2 } 𝖴 {𝑣3, 𝑣3, 𝑣3 … , 𝑣3 } 𝖴 … 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑣𝑛, 𝑣𝑛, 𝑣2 … , 𝑣2 }, 𝐸(𝐺) = {e1, e2, . . . , e𝑙}, 𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑛} denote the vertex 

1 2 3 k−1 

set,  edge  set  and  the  block  set  of W𝑑(𝑘, 𝑘), 𝑘 ≥ 2, 𝑘 ≥ 2. |𝑉(𝐺)| = (𝑘 − 1)𝑛 + 1, 
|𝐵(𝐺)| = 𝑘. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 and 𝐵3. This block coloring is proper. The 
AUM block chromatic number for the windmill graph W𝑑(𝑘, 𝑘))𝑘 ≥ 2, 𝑘 ≥ 2 is 𝑘. i.e., 

3𝐵𝑙(W𝑑(𝑘, 𝑘))) = 𝑘. 

 
In the fig. 4 the AUM block coloring of windmill graph W𝑑(4,4) 

 
 
 
 
 
 

𝑣0 

 
 
 
 
 
 
 
 
 
 
 
 
 

Theorem 4: The friendship graph 𝐹𝑛, 𝑘 ≥ 2, the AUM block chromatic number is 𝑘. 
Proof: Let   𝐹𝑛, 𝑘 ≥ 2,be   the   friendship   graph.   Let   𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1} 𝖴 {𝑣2, 𝑣2} 𝖴 

3 1 2 1 2 
{𝑣3, 𝑣3} 𝖴 … 𝖴 {𝑣𝑛, 𝑣𝑛},𝐸(𝐺) = {e1, e2, . . . , e𝑙}, 𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑛} denote the vertex 

1 2 1 2 

set, edge set and the block set of friendship graph 𝐹𝑛, 𝑘 ≥ 2. |𝑉(𝐺)| = (2)𝑛 + 1, |𝐵(𝐺)| = 

𝑘. 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘. This block coloring is proper. The AUM 
block chromatic number for the friendship graph 𝐹𝑛, 𝑘 ≥ 2 is 𝑘. i.e., 3𝐵𝑙(𝐹𝑛) = 𝑘. 

3 3 
 

Theorem 5: The cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4 the AUM block chromatic number is 𝑘. 

Proof: Let 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 3be the  cactus graph. Let 𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1, 𝑣1 … , 𝑣1 } 𝖴 
k 1 2 3 k−1 

{𝑣2, 𝑣2, 𝑣2 … , 𝑣2 } 𝖴 {𝑣3, 𝑣3, 𝑣3 … , 𝑣3 } 𝖴 … 𝖴 {𝑣𝑛, 𝑣𝑛, 𝑣𝑛 … , 𝑣𝑛 },𝐸(𝐺) = 
1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 

𝑣0 

𝑣0 

𝑣0 

𝑣0 

𝐵2 = 𝑐1 

𝑣0 𝑣0 

𝑣0 

𝑣0 

𝑣0 

 

𝐵4 = 𝑐4 𝑣0 

𝑣0 
𝐵  = 𝑐 3 3 

Fig 4: WindmillW𝑑(4,4) 
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{e1, e2, . . . , e𝑙}, 𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑛} denote the vertex set, edge set and the block set of 

𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4. |𝑉(𝐺)| = (𝑘 − 1)𝑛 + 1, |𝐵(𝐺)| = 𝑘. 
 

Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘. This block coloring is proper. The AUM 
block chromatic number for the cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4 is 𝑘. i.e., 3𝐵𝑙(𝐶𝑛) = 𝑘. 

k k 
 

Theorem 6: The two copies of friendship graph 𝐹𝑛, 𝑘 ≥ 2,joined by the path union ofP2, the 

AUM block chromatic number of G is 𝑘. 

Proof: Let 𝐹𝑛, 𝑘 ≥ 2,be the friendship graph. Considering two copies of friendship graphs 
𝐹𝑛connected with the 2 vertices of the path 𝑃2.  Let 𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1} 𝖴 {𝑣2, 𝑣2} 𝖴 

3 1 2 1 2 
{𝑣3, 𝑣3} 𝖴 … 𝖴 {𝑣𝑛, 𝑣𝑛} 𝖴 {𝑢0} 𝖴 {𝑢1, 𝑢1} 𝖴 {𝑢2, 𝑢2} 𝖴 {𝑢3, 𝑢3} 𝖴 … 𝖴 {𝑢𝑛, 𝑢𝑛},𝐵(𝐺) = 

1 2 1 2 1 2 1 2 1 2 1 2 

{𝐵1, 𝐵2, 𝐵3, … , 𝐵2𝑛+1} denote the vertex set, and the block set of friendship graph 𝐹𝑛, 𝑘 ≥ 2. 

|𝑉(𝐺)| = 2(2)𝑛 +2, |𝐵(𝐺)| = 2𝑘 + 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first friendship graph. Colors 𝑐i1 ≤ i ≤ 

𝑘to the blocks 𝐵jfor 𝑘 + 1 ≤ j ≤ 2𝑘 of Second friendship graph respectively. Block 𝐵2𝑛+1 is 
colored with the color which is not colored to the blocks 𝐵1&𝐵𝑛+1 This block coloring is 

proper. The AUM block chromatic number for the two copies of friendship graph   𝐹𝑛, 𝑘 ≥ 

2,joined by the path union ofP2is 𝑘 + 1. i.e., 3𝐵𝑙(𝐺) = 𝑘. 

 
Theorem 7: The two copies of cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4,joined by the path union ofP2, 

the AUM block chromatic number of Gis𝑘. 

Proof: Let 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 3be the cactus graph. Considering two copies of cactus graph 

𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4connected   with   the   2   vertices   of   the   path   𝑃2.   Let   𝑉(𝐺) = {𝑣0} 𝖴 
{𝑣1, 𝑣1, 𝑣1 … , 𝑣1 } 𝖴 {𝑣2, 𝑣2, 𝑣2 … , 𝑣2 } 𝖴 {𝑣3, 𝑣3, 𝑣3 … , 𝑣3 } 𝖴 … 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑣𝑛, 𝑣𝑛, 𝑣𝑛 … , 𝑣𝑛 } 𝖴 {𝑢0} 𝖴 {𝑢1, 𝑢1, 𝑢1 … , 𝑢1 } 𝖴 {𝑢2, 𝑢2, 𝑢2 … , 𝑢2 } 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑢3, 𝑢3, 𝑢3 … , 𝑢3 } 𝖴 … 𝖴 {𝑢𝑛, 𝑢𝑛, 𝑢𝑛 … , 𝑢𝑛 },, 𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵2𝑛+1} denote the 

1 2 3 k−1 1 2 3 k−1 

vertex set, and the block set of 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4. |𝑉(𝐺)| = 2(𝑘 − 1)𝑛 + 2, |𝐵(𝐺)| = 2𝑘 + 

1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4. 

Colors 𝑐i1 ≤ i ≤ 𝑘to the blocks 𝐵jfor 𝑘 + 1 ≤ j ≤ 2𝑘 of Second cactus graph 𝐶𝑛, 𝑘 ≥ 

2, 𝑘 ≥ 4 respectively. Block 𝐵2𝑛+1 is colored with the color which is not colored to the 
blocks 𝐵1&𝐵𝑛+1. This block coloring is proper. The AUM block chromatic number for the 
two copies of cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4,joined by the path union ofP2is 𝑘. i.e., 3𝐵𝑙(𝐺) = 

𝑘. 
 

Theorem 8: The two copies of graph windmill graph W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2,joined by the 

path union ofP2, the AUM block chromatic number of Gis𝑘. 
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Proof: Let W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2be the windmill graph. Considering two copies of 
windmill graph W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2connected with the vertices of the path 𝑃2. Let 
𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1, 𝑣1 … , 𝑣1 } 𝖴 {𝑣2, 𝑣2, 𝑣2 … , 𝑣2 } 𝖴 {𝑣3, 𝑣3, 𝑣3 … , 𝑣3 } 𝖴 … 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑣𝑛, 𝑣𝑛, 𝑣𝑛 … , 𝑣𝑛 } 𝖴 {𝑢0} 𝖴 {𝑢1, 𝑢1, 𝑢1 … , 𝑢1 } 𝖴 {𝑢2, 𝑢2, 𝑢2 … , 𝑢2 } 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑢3, 𝑢3, 𝑢3 … , 𝑢3 } 𝖴 … 𝖴 {𝑢𝑛, 𝑢𝑛, 𝑢𝑛 … , 𝑢𝑛 }, 𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵2𝑛+1}  denote  the 

1 2 3 k−1 1 2 3 k−1 

vertex   set   and   the   block   set   of     W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2.   |𝑉(𝐺)| = 2(𝑘 − 1)𝑛 + 2, 
|𝐵(𝐺)| = 2𝑘 + 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first windmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2. 

Colors 𝑐i1 ≤ i ≤ 𝑘to  the  blocks  𝐵jfor  𝑘 + 1 ≤ j ≤ 2𝑘  of  second  windmill 
graphW𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2 respectively. Block 𝐵2𝑛+1 is colored with the color which is 
not colored to the blocks 𝐵1&𝐵𝑛+1 . This block coloring is proper. The AUM block 

chromatic number for the two copies of windmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2,joined by the path 

union ofP2is 𝑘. i.e., 3𝐵𝑙(𝐺) = 𝑘. 

 
Theorem 9: The three copies of friendship graph 𝐹𝑛, 𝑘 ≥ 2,joined by the path union ofP3, 

the AUM block chromatic number of G is 𝑘. 

Proof: Let 𝐹𝑛, 𝑘 ≥ 2,be the friendship graph. Considering three copies of friendship graphs 
𝐹𝑛connected  with  the  vertices  of  the  path  𝑃3.  Let  𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1} 𝖴 {𝑣2, 𝑣2} 𝖴 

3 1 2 1 2 
{𝑣3, 𝑣3} 𝖴 … 𝖴 {𝑣𝑛, 𝑣𝑛} 𝖴 {𝑢0} 𝖴 {𝑢1, 𝑢1} 𝖴 {𝑢2, 𝑢2} 𝖴 {𝑢3, 𝑢3} 𝖴 … 𝖴 {𝑢𝑛, 𝑢𝑛} 𝖴 {w0} 𝖴 

1 2 1 2 1 2 1 2 1 2 1 2 
{w1, w1} 𝖴 {w2, w2} 𝖴 {w3, w3} 𝖴 … 𝖴 {w𝑛, w𝑛},𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵2𝑛+1}    denote   the 

1 2 1 2 1 2 1 2 

vertex set and the block set of three copies of friendship graph 𝐹𝑛, 𝑘 ≥ 2. |𝑉(𝐺)| = 

3(2)𝑛 +3, |𝐵(𝐺)| = 3𝑘 +2. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first friendship graph. Colors 𝑐i1 ≤ i ≤ 

𝑘to  the  blocks  𝐵jfor  𝑘 + 1 ≤ j ≤ 2𝑘  of  Second  friendship  graph  respectively.  Colors 

𝑐i1 ≤ i ≤ 𝑘to the blocks 𝐵kfor 2𝑘 + 1 ≤ 𝑘 ≤ 3𝑘 of third friendship graph. 
 

Blocks  𝐵3𝑛+1&𝐵3𝑛+2are  colored  with  the  colors  which  are  not  colored  to  the  blocks 
𝐵1&𝐵𝑛+1&𝐵2𝑛+1. This block coloring is proper. The AUM block chromatic number for the 
three copies of friendship graph   𝐹𝑛, 𝑘 ≥ 2,joined by the path union ofP3is 𝑘. i.e., 3𝐵𝑙(𝐺) = 

𝑘. 
 

Theorem 10: The three copies of cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4,joined by the path union 

ofP3, the AUM block chromatic number of Gis𝑘. 

Proof: Let 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 3be the cactus graph. Considering three cactus graph   𝐶𝑛, 𝑘 ≥ 
k k 

2, 𝑘 ≥ 4connected with the vertices of the path 𝑃3. Let 𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1, 𝑣1 … , 𝑣1 } 𝖴 
1 2 3 k−1 

{𝑣2, 𝑣2, 𝑣2 … , 𝑣2 } 𝖴 {𝑣3, 𝑣3, 𝑣3 … , 𝑣3 } 𝖴 … 𝖴 {𝑣𝑛, 𝑣𝑛, 𝑣𝑛 … , 𝑣𝑛 } 𝖴 {𝑢0} 𝖴 
1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 

{𝑢1, 𝑢1, 𝑢1 … , 𝑢1 } 𝖴 {𝑢2, 𝑢2, 𝑢2 … , 𝑢2 } 𝖴 {𝑢3, 𝑢3, 𝑢3 … , 𝑢3 } 𝖴 … 𝖴 
1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 

{𝑢𝑛, 𝑢𝑛, 𝑢𝑛 … , 𝑢𝑛 } 𝖴 {w0} 𝖴 {w1, w1, w1 … , w1 } 𝖴 {w2, w2, w2 … , w2 } 𝖴 
1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 

IJECE JOURNAL || ISSN:2349-8218 || VOLUME 14 ISSUE 7 2024

PAGE N0: 39



 

 

k

k

3 

3 

3

3

{w3, w3, w3 … , w3 } 𝖴 … 𝖴 {w𝑛, w𝑛, w𝑛 … , w𝑛   },   𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵3𝑛+2}   denote 
1 2 3 k−1 1 2 3 k−1 

the vertex set and the block set of three copies of cactus 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4. |𝑉(𝐺)| = 

2(𝑘 − 1)𝑛 + 2, |𝐵(𝐺)| = 2𝑘 + 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first cactus graph. Colors 𝑐i1 ≤ i ≤ 𝑘to 

the blocks 𝐵jfor 𝑘 + 1 ≤ j ≤ 2𝑘 of Second cactus graph.Colors 𝑐i1 ≤ i ≤ 𝑘to the blocks 

𝐵kfor 2𝑘 + 1 ≤ 𝑘 ≤ 3𝑘 of third cactus graph . Blocks 𝐵3𝑛+1&𝐵3𝑛+2are colored with the 
colors which are not colored to the blocks 𝐵1&𝐵𝑛+1&𝐵2𝑛+1. This block coloring is proper. 

The AUM block chromatic number for the three copies of cactus graph    𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 

4,joined by the path union ofP3is 𝑘. i.e., 3𝐵𝑙(𝐺) = 𝑘. 
 

Theorem 11: The three copies of graph windmill graph W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2,joined by 

the path union ofP3, the AUM block chromatic number of Gis𝑘. 

Proof: Let W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2be the windmill graph. Considering three copies of 
windmill graph W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2connected with the vertices of the path 𝑃2. Let 
𝑉(𝐺) = {𝑣0} 𝖴 {𝑣1, 𝑣1, 𝑣1 … , 𝑣1 } 𝖴 {𝑣2, 𝑣2, 𝑣2 … , 𝑣2 } 𝖴 {𝑣3, 𝑣3, 𝑣3 … , 𝑣3 } 𝖴 … 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑣𝑛, 𝑣𝑛, 𝑣𝑛 … , 𝑣𝑛 } 𝖴 {𝑢0} 𝖴 {𝑢1, 𝑢1, 𝑢1 … , 𝑢1 } 𝖴 {𝑢2, 𝑢2, 𝑢2 … , 𝑢2 } 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{𝑢3, 𝑢3, 𝑢3 … , 𝑢3 } 𝖴 … 𝖴 {𝑢𝑛, 𝑢𝑛, 𝑢𝑛 … , 𝑢𝑛 } 𝖴 {w0} 𝖴 {w1, w1, w1 … , w1 } 𝖴 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 
{w2, w2, w2 … , w2 } 𝖴 {w3, w3, w3 … , w3 } 𝖴 … 𝖴 {w𝑛, w𝑛, w𝑛 … , w𝑛    }, 𝐵(𝐺) = 

1 2 3 k−1 1 2 3 k−1 1 2 3 k−1 

{𝐵1, 𝐵2, 𝐵3, … , 𝐵3𝑛+1} denote the vertex set, edge set and the block set of three copies of 
windmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2. |𝑉(𝐺)| = 2(𝑘 − 1)𝑛 + 2, |𝐵(𝐺)| = 2𝑘 + 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first windmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2. 

Colors 𝑐i1 ≤ i ≤ 𝑘to  the  blocks  𝐵jfor  𝑘 + 1 ≤ j ≤ 2𝑘  of  second  windmill 
graphW𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2   respectively.   Colors 𝑐i1 ≤ i ≤ 𝑘to the blocks 𝐵kfor 2𝑘 + 

1 ≤ 𝑘 ≤ 3𝑘 of third windmill graph . Blocks 𝐵3𝑛+1&𝐵3𝑛+2are colored with the colors which 
are not colored to the blocks 𝐵1&𝐵𝑛+1&𝐵2𝑛+1.  This block coloring is proper. The AUM 

block chromatic number for the three copies ofwindmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2,joined by 
the path union ofP3is 𝑘. i.e., 3𝐵𝑙(𝐺) = 𝑘. 

 
Theorem 12: The𝑘 copies of friendship graph 𝐹𝑛, 𝑘 ≥ 2,joined by the path union ofPn, the 

AUM block chromatic number of G is 𝑘. 

Proof: Let 𝐹𝑛, 𝑘 ≥ 2,be the friendship graph. Considering 𝑘 copies of friendship graphs 

𝐹𝑛connected with the n vertices of the path 𝑃𝑛.Let 
𝑉(𝐺), 𝐸(𝐺), 𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑛2+𝑛−1} denote the vertex set, edge set and the block set 

of n copies of friendship graph 𝐹𝑛, 𝑘 ≥ 2. |𝑉(𝐺)| = n(2)𝑛 +n+1, |𝐵(𝐺)| = 𝑘2 + 𝑘 − 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first friendship graph.  Colors 𝑐i1 ≤ i ≤ 

𝑘to  the  blocks  𝐵jfor  𝑘 + 1 ≤ j ≤ 2𝑘  of  Second  friendship  graph  respectively.  Colors 

𝑐i1 ≤ i ≤ 𝑘to the blocks 𝐵kfor 2𝑘 + 1 ≤ 𝑘 ≤ 3𝑘 of third friendship graph. The same colors 
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are assigned to corresponding blocks of each copy of friendship graph.Blocks 𝐵𝑛2+1𝐵𝑛2+2, 
𝐵𝑛2+3,𝐵𝑛2+4,…,𝐵𝑛2+𝑛−1  are colored with the color which are  not  colored to the blocks 
𝐵1&𝐵𝑛+1𝐵2𝑛+1, 𝐵3𝑛+1, . . . , 𝐵(𝑛−1)𝑛+1. This block coloring is proper. The AUM block 

chromatic number for the𝑘 copies of friendship graph   𝐹𝑛, 𝑘 ≥ 2,joined by the path union 

ofPnis 𝑘. i.e., 3𝐵𝑙(𝐺) = 𝑘. 
 

Theorem 13: The𝑘 copies of of cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4,joined by the path union ofPn 

the AUM block chromatic number of Gis𝑘. 

Proof: Let 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 3be the cactus graph. Considering 𝑘 copies of cactus graph 

𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4connected with the n vertices of the path 𝑃𝑛. et 𝑉(𝐺), 𝐸(𝐺), 𝐵(𝐺) = 

{𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑛2+𝑛−1} denote the vertex set, edge set and the block set of n copies of cactus 
𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4. |𝑉(𝐺)| = 𝑘(𝑘 − 1)𝑛 + 2, |𝐵(𝐺)| = 𝑘2 + 𝑘 − 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first cactus graph. Colors 𝑐i1 ≤ i ≤ 𝑘to 

the blocks 𝐵jfor 𝑘 + 1 ≤ j ≤ 2𝑘 of Second cactus graph.Colors 𝑐i1 ≤ i ≤ 𝑘to the blocks 

𝐵kfor 2𝑘 + 1 ≤ 𝑘 ≤ 3𝑘 of third cactus graph . The same colors are assigned to 

corresponding blocks of each copy of cactus graph. 

 
Blocks 𝐵𝑛2+1𝐵𝑛2+2, 𝐵𝑛2+3,𝐵𝑛2+4,…,𝐵𝑛2+𝑛−1   are colored with the color which are not 
colored to the blocks 𝐵1&𝐵𝑛+1𝐵2𝑛+1, 𝐵3𝑛+1, . . . , 𝐵(𝑛−1)𝑛+1. This block coloring is proper. 

The AUM block chromatic number for the𝑘 copies of cactus graph 𝐶𝑛, 𝑘 ≥ 2, 𝑘 ≥ 4,joined 

by the path union ofPnis 𝑘. i.e., 3𝐵𝑙(𝐺) = 𝑘. 
 

Theorem 14: The𝑘 copies of of graph windmill graph W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2,joined by 

the path union ofPn, the AUM block chromatic number of Gis𝑘. 

Proof: Let W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2be the windmill graph. Considering two windmill graph 

W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2connected with the n vertices of the path 𝑃𝑛. Let 𝑉(𝐺), E(G), 
𝐵(𝐺) = {𝐵1, 𝐵2, 𝐵3, … , 𝐵3𝑛+1} denote the vertex set, edge set and the block set of n copies of 
windmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2. |𝑉(𝐺)| = 2(𝑘 − 1)𝑛 + 2, |𝐵(𝐺)| = 2𝑘 + 1. 

 
Assign the colors 𝑐ito the blocks 𝐵ifor 1 ≤ i ≤ 𝑘 of first windmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2. 

Colors 𝑐i1 ≤ i ≤ 𝑘to  the  blocks  𝐵jfor  𝑘 + 1 ≤ j ≤ 2𝑘  of  second  windmill 
graphW𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 2   respectively.   Colors 𝑐i1 ≤ i ≤ 𝑘to the blocks 𝐵kfor 2𝑘 + 

1 ≤ 𝑘 ≤ 3𝑘 of third windmill graph . The same colors are assigned to corresponding blocks 
of each copy of windmill graph. 

 
Blocks 𝐵𝑛2+1𝐵𝑛2+2, 𝐵𝑛2+3,𝐵𝑛2+4,…,𝐵𝑛2+𝑛−1 are colored with the color which are not 
colored to the blocks 𝐵1&𝐵𝑛+1𝐵2𝑛+1, 𝐵3𝑛+1, . . . , 𝐵(𝑛−1)𝑛+1. . This block coloring is proper. 

The AUM block chromatic number for the𝑘 copies ofwindmill W𝑑(𝑘, 𝑘)), 𝑘 ≥ 2, 𝑘 ≥ 

2,joined by the path union ofPnis 𝑘. i.e., 3𝐵𝑙(𝐺) = 𝑘. 
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4. CONCLUSION 

In this paper, we have introduced the new definition of block coloring, and found that the 

block chromatic number ofpath, cycle, complete graph,𝑘 −barbell graph, windmill graph, 

friendship graph, cactus graph, bipartite graph and their extensions. The work has huge scope 

for further continuation and application in power industry and management etc. 
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